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PROBLEM 
 
Understanding the types and volumes of different commodities being hauled over the roadway 
network is an important aspect of the freight planning process. To adequately allocate resources 
for accommodating commercial freight delivery and distribution across the highway network 
public agencies need to predict the quantity and type of the commodities. However, collecting 
commodity-specific freight data is a challenge. The Census Bureau conducts a Commodity Flow 
Survey (CFS) every five years at the national level. The CFS is a primary source for the freight 
analysis framework. However, the CFS may not be representative at the state or metropolitan 
levels, therefore, there is a need to collect this information for planning and monitoring purposes 
using the currently available technologies. There are various types of sensors for vehicle detections 
and classification (e.g., inductive loops, weigh-in-motion (WIM) sensors, radar), and they provide 
the raw data needed to classify vehicles into a predefined set of classes such as FHWA’s 13-class 
scheme. These schemes or algorithms work mostly based on the number of axles and number of 
trailers and do not provide much details about the type of trailer attached to the truck. Categorizing 
trailers into subclasses (e.g., container, dry van, refrigerated vans, tank, and car transporter) will 
help narrow down the type of commodity that is being carried. For example, refrigerated trailers 
are commonly used to transport perishable produce and meat products, tank trailers are for fuel 
and other liquid products, and livestock is carried in specialized trailers. The main goal of this 
project is to investigate the feasibility of using data from non-intrusive sensors (e.g., camera and 
LIDAR) to identify the type of trailer. Algorithms are developed to demonstrate the feasibility of 
accurately detecting and classifying the trailer types.  
 

APPROACH 
 

The main focus of this project is to investigate how emerging sensors could be utilized in 
categorizing trucks into more distinct classes beyond the common classes (e.g., FHWA’s 13 
classes). In particular, data collected by a 3D LIDAR sensor are analyzed to extract pertinent 
information for classifying truck trailers into subtypes. Raw point-cloud data from these sensors 
include distance to the target and intensity of the reflected light. From these data, it is possible to 
construct a 3D representation of the objects within the range of the sensor. As explained later in 
the report, a LIDAR unit along with a set of surveillance cameras are used to collect data at a 
specific location on I-64 in Hampton Roads, VA. The collected data include samples of four trailer 
types: Intermodal container, refrigerated container, dry van, and refrigerated dry van. After data 
processing, various machine learning algorithms are developed to automatically classify observed 
trucks into these four subcategories.  
 It should be mentioned that data from other types of sensors could also be utilized to 
classify trucks into subcategories. For example, recently, researchers show how WIM and 
inductive loop signature data [1] could be used to detect truck body types. Since such options have 
been explored previously, this study is focused on the emerging technology of LIDAR for traffic 
data collection. The classification results obtained based on the LIDAR data will be compared to 
those in the literature [1].  
 
 



 

2 
 

METHODOLOGY 
 
The data needed to conduct this research come from a LIDAR unit and a set of surveillance 
cameras. The video collected by the cameras is used for ground truth and model validation. The 
LIDAR and surveillance cameras continuously collected data for 36 days. After data collection is 
completed, the data are preprocessed for further analyses and feature extraction. For each 
individual vehicle observed, the point cloud data from multiple LIDAR frames are combined to 
generate a 2-dimensional profile. These profiles form the basis or input data to the machine 
learning algorithms. Two machine learning methods are developed to classify truck body types:  

1. The first method involves extracting useful features from the 2D-profiles which are then 
taken as inputs to a Support Vector Machines (SVM) model. Support Vector Machines 
(SVM) solves an optimization problem to find the optimal hyperplane to separate classes 
[2] based on the features and labels of the training data. The SVM model classifies the 
trucks into three groups: Dry van, intermodal container, and other. After this grouping, a 
heuristic is developed to detect whether a truck classified as either dry van or intermodal 
container has a refrigerated unit or not. In the end, these two steps (SVM and the heuristic) 
will classify the trucks into the four types described earlier.  

2. In the second method, deep Convolutional Neural Networks (CNNs) are used which do not 
require extracting specific features as inputs. In particular, rather than developing and 
training new deep CNNs, some of the well-known pre-trained models (VGGNet, AlexNet, 
and ResNet) are customized to solve the classification problem. This method is called 
“transfer learning” since many of the parameters of these pre-trained models are kept the 
same. These models (VGGNet, AlexNet, and ResNet) are extensively trained to solve 
challenging object recognition problems.  
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FINDINGS 
 
The two methods described above are first developed based on some training data. They are then 
applied to test data to evaluate their performance in terms of how accurately they classify the truck 
body types. Their performance is summarized in terms of a confusion matrix that shows both 
accurate classification and misclassified trucks.  

Table 1 shows the confusion matrix for the first method where the rows represent the actual 
class and columns the predicted class. The whole numbers correspond to the number of samples 
and the values in parenthesis are percentage of them with respect to the total number of samples 
in that category (i.e., total number of samples in the row). Most of the samples are correctly 
classified. While the overall accuracies are higher than 90%, more refinements can be made to the 
models to improve these accuracies.  
  
Table 1 Confusion Matrix for the SVM and Heuristic Method 

 Predicted 

Container Ref 
Container Ref Enclosed Van Enclosed Van 

T
ru

e 

Container 279  
(93.62%) 

12  
(4.03%) 

1  
(0.34%) 

6  
(2.01%) 

Ref Container 0  
(0.00%) 

29  
(93.55%) 

2  
(6.45%) 

0  
(0.00%) 

Ref Enclosed Van 0  
(0.00%) 

2 
 (0.99%) 

185  
(91.13%) 

16  
(7.88%) 

Enclosed Van 4  
(1.08%) 

0  
(0.00%) 

18  
(4.88%) 

347  
(94.04%) 

 
 
 
For the second method, the confusion matrix of each model summarizing the testing results is 
shown in Table 2. It is evident that all three models produce comparable accuracies and 
misclassification is a slightly skewed towards containers. The accuracies are a bit lower for 
refrigerated trailers (i.e., Ref Containers and Ref Enclosed VAs). For example, in the AlexNet 
model, the containers are classified with 98% accuracy whereas refrigerated containers with 
90%. Perhaps, the relatively lower accuracy in the refrigerated containers category could be 
attributed to the lower number of samples in this category (201 samples) as compared to the 
other three. It should be noted that the misclassifications are almost always between a trailer type 
and its refrigerated counterpart. If these are ignored, i.e., if the trailer type and its refrigerated 
counterpart are considered as one class, the AlexNet model produces about 98% accuracy in 
distinguishing between these two more aggregate classes.  
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Table 2 The confusion matrix of all three CNN models 

AlexNet 

 Predicted 
Container Ref Container Ref Enclosed van Enclosed van 

T
ru

e 

Container 
1832 7 3 20 

(98.38 %) (0.38%) (0.16 %) (1.07 %) 

Ref Container 
20 181 0 0 

(9.95 %) (90.05 %) (0 %) (0 %) 

Ref Enclosed van 
1 0 1003 44 

(0.1 %) (0 %) (95.70 %) (4.20 %) 

Enclosed van 14 1 24 1564 
(0.87 %) (0.06 %) (1.5 %) (97.57 %) 

      
VGGNet 

 Predicted 
Container Ref Container Ref Enclosed van Enclosed van 

T
ru

e 

Container 1802 32 5 23 
(96.78 %) (1.72 %) (0.27 %) (1.24 %) 

Ref Container 65 136 0 0 
(32.34 %) (67.66 %) (0.00 %) (0.00 %) 

Ref Enclosed van 6 0 976 66 
(0.57 %) (0.00 %) (93.13 %) (6.30 %) 

Enclosed van 19 1 106 1477 
(1.19 %) (0.06 %) (6.61 %) (92.14 %)       

ResNet 

 Predicted 
Container Ref Container Ref Enclosed van Enclosed van 

T
ru

e 

Container 1821 5 2 34 
(97.80 %) (0.27 %) (0.11 %) (1.83 %) 

Ref Container 31 169 0 1 
(15.42 %) (84.08 %) (0.00 %) (0.5 %) 

Ref Enclosed van 2 0 1006 40 
(0.19 %) (0.00 %) (95.99 %) (3.82 %) 

Enclosed van 19 1 30 1553 
(1.19 %) (0.06 %) (1.87 %) (96.88 %) 
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CONCLUSIONS 
 
This study demonstrates that LiDAR data could be effectively utilized to accurately predict truck 
trailer types. The presented methodology for processing the data involves a series of statistical 
models, heuristics, and machine learning algorithms to extract pertinent features to distinguish 
between different truck body types. After extracting key features, a Support Vector Machine 
(SVM) model is trained to determine whether the subject truck is hauling an enclosed van or an 
intermodal container. The results of the SVM model on test data show very high level of accuracies 
at around 98%. After determining the body type, the presence of a refrigerator unit is detected by 
a heuristic method that searches the density of points at the frontend of the container or dry van. 
This method also yields relatively high accuracy rates between 92% and 96% on the test data. 

In addition to SVM method a transfer learning model is developed. Since the simple or 
basic features for any type of image datasets are the same, it was possible to transfer features 
learned by a pre-trained model (ResNet_152, VGGNet, AlexNet) to another classifier and build 
highly accurate models with relatively small datasets. Four of the most challenging categories of 
trucks are chosen to train the model. Four different experiments are conducted to find the optimal 
level of complexity for transferring learned features. It is shown that the first 33 layers of the 
ResNet_152, the first 7 layers of VGGNet, and the first 3 layers of AlexNet have the best 
performance on this dataset. With any one of the three CNNs analyzed here, as long as the optimal 
point for transferring the learning (or features) is selected, it is possible to get around 97% 
classification accuracy. The computation time for feature extraction shows that it is better to use a 
shallower CNN models with less parameters for this specific problem since the accuracy of more 
complex models are almost the same.  Results from the confusion matrices show that the models 
are very accurate (~98%) in distinguishing between enclosed vans and containers, and trucks with 
refrigerator units (the refrigerator containers or refrigerator enclosed vans) are more prone to be 
misclassified. The AlexNet model was found to be computationally more efficient to implement 
and yielded classification accuracies higher than 90% for each one of the four truck body types.  

Clearly, the scope of this study is limited in terms of the variety of truck body types 
considered. However, the authors believe that similar models could be developed to capture salient 
features for other truck body types, some of which have easily distinguishable characteristics such 
as tanks and empty flatbeds. This research will ultimately enhance freight and commodity 
modeling research by providing a detailed breakdown of truck body types at observation stations 
where a LiDAR sensor is installed.  
 

COMPLETE DOCUMENTATION 
This section provides a detailed overview of all the work undertaken in this project including 
literature synthesis, data collection process, data description, post-estimation analysis, and 
experimental work. 
 

Past Literature: 
Vehicle classification plays a significant role in almost all aspects of transportation engineering 
and planning applications. In mid 1980s, the FHWA developed a standardized 13-category vehicle 
classification rule set which meet the needs of many traffic data user applications, such as highway 
and pavement design, performance monitoring, tolling, transportation planning, and freight 
planning and modeling, etc. The rule set is designed to classify visual descriptions of vehicles 
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using axle-related metrics, such as the number of axles, axle spacing, number of trailers, and 
vehicle length with the available intrusive and non-intrusive equipment. The intrusive equipment 
includes inductive loops, road tubes, and piezo sensors, etc. [3]. The non-intrusive equipment 
includes video detection system, passive infrared, radar, etc. [3]. The complete list of common and 
current data collection technologies can be seen in Table 3 [4]. In general, rule-set separates 
vehicles into categories depending on the passenger vehicles or commodities. For some 
engineering and planning analyses, people use a generalized 4-bin categorization which include 
cars, small trucks, large trucks, and multi-trailer trucks. 

 
 

Table 3 Common technologies for vehicle classification. 
Axle-Based Length-Based 

Infrared (passive) (NI) 
Laser radar (NI) 
Piezo-electric (I) 
Quartz sensor (I) 
Fiber optic (I) 
Inductive Loop Signatures (I) 
Capacitance mats (I) 
Bending plates (I) 
Load cells (I) 
Contact switch closures (e.g., road tubes) 
Specialized inductive loop systems 

Dual inductive loops (I) 
Inductive loops (loop signature) (I) 
Magnetic (magnetometer) (I) 
Video detection system (NI) 
Microwave radar (NI) 
CW Doppler sensors (NI) 

Key: Non-Intrusive (NI), Intrusive (I), Source: (FHWA 2016)  
 

However, 4 bins category is not sufficient for some applications, such as estimation of 
pavement loads or freight planning and modeling. In order to have suitable data for analysis, in 
2003, the Transportation Research Board (TRB) Expert Task Group (ETG) on Long-Term 
Pavement Performance (LTPP) Traffic Data Collection and Analysis developed a new set of rules 
for classifying vehicles based on sensor outputs available from WIM systems [5]. This rule-set is 
sufficient for pavement and bridge designs but for freight planning and modeling there is still need 
for more detailed information of the truck characteristics, such as refrigerated, tank, specialized 
trailers, etc. FHWA and LTPP rule-sets cannot distinguish detailed characteristics of the truck 
trailers. It is important to know the type of commodity to support freight demand modeling [6]. 
For classifying truck body types, researchers applied machine learning algorithms to loop signature 
and WIM data [1]. Researchers also used WIM data to unanimously re-identify trucks between 
two observation sites to support freight modeling [7, 8].  

Having access to more detailed truck characteristics may help reveal information about the 
commodity being carried. For example, refrigerated trailers are commonly used to transport 
perishable produce and meat products, tank trailers are for fuel and other liquid products, and 
livestock is carried in specialized trailers. It is obvious that not all commodity types can be easily 
inferred from the externally observable characteristics of the truck or trailer, however, it is possible 
to narrow the possible types of commodities if the trailers are classified into distinct categories 
(e.g., car-transporter, tank, enclosed van, intermodal container, empty platform or trailer). Non-
intrusive sensors are also widely used for vehicle classification but again they do not provide truck 
trailer or commodity type. However, researchers have attempted to classify vehicles from data 
from surveillance cameras [9, 10]. Another non-intrusive sensor is Light Detection Area Ranging 
(LIDAR) which is becoming widely available in the transportation field due to the recent research 
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and developments in automated driving technologies. In this technology, the raw point-cloud data 
from these sensors include distance to the target and intensity of the reflected light. From these 
data, it is possible to construct a 3D representation of the objects within the range of the sensor. 
Researchers have recently investigated how these sensors could be used for monitoring traffic flow 
and estimating vehicle trajectories [11-13] and for evaluating highway safety issues [14, 15]. 

The Artificial Neural Network (ANN)  idea has been around since 1960 [16]. There have 
been many studies using ANN as a machine learning approach in all engineering fields including 
the transportation community [17]. The advantage of ANN over classical machine learning 
approaches such as SVM is the ability of this method to perform feature extraction and selection 
automatically. To get the best performance out of classical methods, researchers need to select the 
best features to represent the data, which is time-consuming and involves some heuristic 
procedures. In a sense, for classical methods, some part of the learning has to be done by the 
researcher. Up to a few years ago, the performance of ANNs and classical methods were almost 
the same. With the recent advancements in computational power and an increase in the 
accumulation of data, researchers have noticed an interesting pattern in the performance of 
machine learning algorithms. The performance of ANNs increases rapidly with more data while 
the performance of classical methods would not get better after a certain point. This observation 
has led to increase in new studies about ANNs in the field of computer science. For some tasks, 
such as image retrieval [18], object detection, and tracking [19, 20] ANN has reached a state of 
the art performance. Convolutional Neural Network (CNN) image classification is one of the most 
successful methods in neural network research. It can find the properties of different categories 
much more accurate than other methods. The drawback of CNN is the need for the tremendous 
amount of training data and computation power because the model has to optimize numerous 
parameters in its network structure [21].  Recently, this method got popular among transportation 
researchers. One study was able to detect cracks on hot-mix asphalt and Portland cement concrete 
using pavement images with the help of deep CNN [22]. Other researchers have used CNNs for 
vehicle detection based on satellite images [23] and vehicle classification based on video from 
surveillance camera [24].  

The training process of deep CNNs is time-consuming and needs a huge amount of 
computational power. Moreover, it can easily lead to overfitting. Some researchers have tried pre-
training and fine-tuning strategy to overcome this limitation [25]. They have pre-trained a 
GoogleNet model [26] on the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 
2012 dataset to find the initial model. Then using 13,700 images extracted from surveillance 
cameras, they have fine-tuned the initial model. This approach has reached around 98% accuracy 
in classification of vehicles. This strategy would solve the overfitting problem but the pre-training 
procedure is still computationally intensive. By visualizing learned features of CNN [27], 
researchers have noticed that the network always learn low-level features at the beginning layers 
and consecutively features would become more complex as you go deeper into the model. 
Independent from the dataset, low-level features are always the same for almost any type of 
images. It would be intuitive to keep low-level features learned from one dataset and transfer that 
knowledge to perform classification on different dataset. This method uses the feature descriptor 
parts of an already existing trained model such as AlexNet [28] and replaces the classifier part 
with a new task-specific model. This type of modeling practice is called “transfer learning.” Many 
researchers have used transfer learning to improve the accuracy and proficiency of new models 
with limited training data [29-32].  
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There are many CNN models trained on ImageNet dataset [21] that can be used as pre-
trained CNN including AlexNet [28], VGGNet [33], and ResNet [34]. In this study, we have 
investigated the implementation of transfer learning on these three pre-trained models to find the 
best performance for the classification of truck images generated from data collected by a 3D 
LiDAR sensor. 
 
Data Collection 
    
A Velodyne VLP-16 LIDAR [35] along with a camera system was installed on I-64 WB in 
Hampton Roads, VA. More specifically, it is installed on the post carrying the last VMS gantry 
before the Willoughby Bridge on the Willoughby Spit side, as seen in Figure 1. Surveillance 
camera and LIDAR timestamps were synchronized so that the same truck can be found in LIDAR 
files.   

Since trucks are prohibited from traveling in the left lane, LIDAR data collection is limited 
to the rightmost lane. The LIDAR sensor is approximately 22 ft. above ground and 20 ft. away 
from the edge of the travel lane. The LIDAR sensor and the surveillance cameras are oriented to 
get good coverage of the vehicles traveling in the right lane.  
 

  

22ft 

20ft 

Figure 1 LIDAR and surveillance cameras mounted on the gantry pole before the 
Willoughby Bridge 

 
The VLP-16 LIDAR sensor comes with 16 beams, which covers a 30° view angle with 

360° rotation around its internal z-axis. The LIDAR frequency is 10 Hz, which provides a very 
rich cloud point dataset. The data points measured by its 16 beams within one complete rotation 
are called a scan or frame. The unit can be installed in a vertical or horizontal (or any other angle) 
scanning mode depending on the application. If it is mounted horizontally (Figure 2a) on the 
roadside, it covers a maximum of 50 meters from the sensor in the longitudinal direction of the 
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roadway, but it will not result in a dense sets of points for each individual vehicle observed. In a 
vertical configuration (Figure 2b), it covers about a 3.5 meters longitudinal section of the roadway 
and provides a greater density of points per vehicle. Most passenger vehicles can fit within this 
range, but vehicles longer than 3.5 meters will not. Therefore, multiple scans or frames need to be 
combined to create full 3D or 2D profiles of trucks. For this research, the LIDAR is configured in 
the vertical orientation as shown in Figure 2. 

 

 
 

Figure 2 LIDAR orientation (a) horizontal and (b) vertical. 
 
Since trucks are travelling only in the right lane, LIDAR points reflected from objects 

elsewhere can be excluded from the dataset. Thresholds were established to eliminate these 
redundant data points. Figure 3 shows a complete LIDAR scan, whereas Figure 4 has the remaining 
data points after removing the redundant data. All the analyses are performed with the subset of 
points belonging to vehicles traveling on the right lane, as in Figure 4.  

 

 
Figure 3 A full scan or frame from the LIDAR sensor  
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Data Preprocessing 
 

Coordinate Transformation 
The LIDAR sensor provides the position of each point in its own a 3D Cartesian coordinate system, 
as defined in Figure 2 (a).  This coordinate system may not be fully aligned with the travel lane. 
Therefore, the raw data are transformed to a new coordinate system where the x-axis is along the 
travel direction, the y-axis is perpendicular to the roadway surface, and the z-axis the lateral 
direction. This transformation is simply accomplished by identifying unit vectors along these three 
directions. Then, the points are transformed to the new coordinate system by employing a rotation 
matrix, a commonly used coordinate transformation method.   

As seen in Figure 4 (a), a truck enters the field of view of the LIDAR. After coordinate 
transformation is applied to the raw data, it is recreated as shown in Figure 4 (b) with all the original 
data preserved. Working in the new coordinate system facilitates the remaining steps where speed 
is estimated for merging multiple frames as explained next.  

  
(b) 

Figure
(a) 
 4 Before (a) and after (b) coordinate transformation 

 

Speed Estimation 
As explained above, the entire truck does not fit within the detection zone or the field of view of 
the LIDAR. Therefore, to generate the full truck profile, multiple frames need to be merged. This 
can be done if the speed at which the truck is traveling is known. Using the first two consecutive 
frames and the time instances when the truck enters the scan zone of each beam, the speed of the 
vehicle can be estimated since the distance between individual beams is known. Likewise, as the 
truck is departing the detection zone, the last two frames can be utilized in the same manner to 
estimate another speed. In fact, as long as the vehicle is not occupying the entire set of 16-beams 
in two consecutive frames, data from such frames can be used similarly to estimate speed. These 
speeds are then averaged to find a constant average speed for the vehicle. It should be noted that 
this precision of this method is limited since the distance can only be measured in increments of 
the distance between two consecutive beams. For this installation, this increment is about one foot. 
Given the fact that the time between two frames is 0.1 seconds, this discretized measurement of 
travel distance translates to approximately ±7 mph maximum error (worst case) for a truck 
traveling around 50 mph. However, since multiple estimates are utilized the actual error is expected 
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to be lower than this. The research team did not have a speed-measuring sensor at the site to 
quantify the error in the estimated speeds.  
 

Merging Multiple Frames 
Based on the estimated average speed, the frames belonging to the same trucks are then merged 
by shifting the consecutive frames accordingly. A reconstructed sample 2D profile of a truck is 
shown in Figure 5. To facilitate more efficient computation, the 3D LIDAR points are projected 
onto a 2-dimentional x-y grid where each cell is 2 inch by 2 inch. A typical FHWA Class 9 truck 
spends about 1-2 seconds within the LIDAR detection zone at free flow speed. Within this time, 
LIDAR generates around 30,000 points. Projecting the data to the 2D grid reduces the computation 
load needed to process this large number of points per truck. This projection reduces the data points 
drastically to around 1,000 points. The bottom plot in Figure 5 represents the 2D profile of the 
truck that is generated after merging the cloud points of the truck in the top picture. Each cell of 
the truck profile is 2in by 2in and color scale represents the average of z-coordinates (or depth) of 
raw 3D points corresponding to that grid point. 
 

 
Figure 5 Merged cloud point data projected onto a 2D grid (bottom) and the corresponding 
truck image (top). 
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Height Estimation 
The heights of individual points of LIDAR data from the roadway surface are found by the 
following process. First, LIDAR frames belonging to a specific truck are labeled. This process 
involves consecutively numbering all vehicles passing under the detection zone and assigning each 
LIDAR beam and frame to the corresponding vehicle. Appendix A shows a sample table 
demonstrating how point cloud data belonging to individual vehicles (or vehicle IDs) are labeled 
and extracted from the raw LIDAR data tables. Once points are grouped by vehicle IDs, the height 
of each individual point is computed with respect to the roadway surface. This is accomplished by 
using basic geometry and the equation of a point to a plane (i.e., roadway surface) – see Figure 6. 
The plane equation is found by fitting a surface plane to the data collected when there is no vehicle 
in the detection zone (roadway surface of the right lane).  
 

 
Figure 6 Equations used to calculate the height of a given point on a vehicle to the roadway 
surface represented by a plane 
 

Ground Truth Labeling 
The process explained above is applied to every vehicle passing under the LIDAR detection zone. 
Then each vehicle’s LIDAR cloud points and actual images which is extracted from the video are 
stored in a relational database. A custom tool shown in Figure 7 is developed for visually matching 
LIDAR data with vehicle images along with fields for inputting the vehicle configuration such as 
truck body type, number of axles, etc.  
 

 
Figure 7 Interface developed to manually label vehicle classes 
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Testing and Training Dataset 
For this study, only a small subset of the data are utilized since manually labeling vehicles into 
different categories is time consuming. We selected several days without precipitation, and time 
periods during daylight times to extract images and LIDAR data. Overall, 3,336 trucks are 
manually labeled and verified from the video files. These trucks and their classes are listed in Table 
4. Sample truck images belonging to each class are shown in Figure 13. The sample is split into 
two groups: training and testing. The data for the set of trucks in the training group are used for 
developing and training the classification algorithms (presented in the next section). The testing 
data are used for quantifying the accuracy of the models.  
 
Table 4 Training and testing data 

Trailer Type Training Testing Total 
Intermodal container 691 298 990 
Refrigerated container 81 31 112 
Dry van 854 369 1,225 
Refrigerated dry van 493 203 698 
Other (Platform, auto 
transport, tank, dump, etc.) 218 98 319 

Total Samples 2,337 999 3,336 
 

 
SVM Method 
To be able to categorize trucks into distinct groups, pertinent features that help distinguish trucks 
in each group are needed.  After experimenting with different combination of variables, the six 
variables listed in Table 5 are found to be effective for the purpose of this study and are used as 
input features. 
 
Table 5 Features extracted for each truck 

Feature Abbreviation  
Trailer length TrL  
Trailer height TrH  
Trailer surface interquartile range TrIQR  
Top density TD  
Bottom density BD  
Overhang OH  

 
These variables show enough variation across the two types of the truck trailers as shown 

in plots in Figure 8(b). In the sample data, refrigerated containers have similar surface smoothness 
as dry vans. Therefore, their TrIQR or TrSSD would be similar to that of dry vans but their 
overhang (OH) measure is not as can be observed in  Figure 8(a). 
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      (a)                            (b) 

Figure 8 (a) Overhang by Interquartile Range (b) Trailer height by trailer length 
 

Trailer Length (TrL) and Trailer Height (TrH) 
To find the trailer dimensions, a rectangular box is drawn as shown in Figure 9. While not all 
enclosed vans have a perfect rectangular side profile, this assumption is accurate enough for the 
analyses conducted here. To find the needed dimensions, four sides of the rectangle (top, bottom, 
front, and back) needs to be determined. Since all trailers analyzed here have a relatively straight 
side profile, this is exploited to determine the four sides needed.  

For example, to determine the x-coordinate for the frontend of the trailer, a rectangular 
region (e.g., 2ft high and 6.5ft long) much smaller than the trailer is selected where the ends of this 
region are safely away from the four boundaries of the trailer. As indicated earlier each grid cell 
contains the average z-coordinate (depth) of all LIDAR points corresponding (i.e., projected) to 
that cell. We then collapse the vertical dimension of this sample (2ft by 6.5ft) rectangle by taking 
the average of all z-coordinates for all y-levels at a given x coordinate. This results in one-
dimensional vector (along x-axis) with z-coordinates as the variables. We then fit a simple linear 
regression model of the form z = mx +b to this vector. We then use this model to predict z-
coordinate (depth) as function of x, where x is now extended further towards the tractor unit where 
the frontend of the trailer is expected to be. By measuring the difference between predicted z 
(depth) and actual z (depth) we can identify a sudden drop or change in the surface depth. The x-
coordinate where the first sudden drop occurs will be identified as the frontend of the trailer. This 
technique is repeated to determine the backend, top, and bottom of the trailer as well by scanning 
in the relevant direction. Once these four coordinates are found the trailer dimensions are 
straightforward to compute.  
 

Trailer Surface Standard Deviation (TrSSD) and Trailer Surface Interquartile Range (TrIQR) 
The surface smoothness of intermodal containers is quite different from that of enclosed vans. 
Typical intermodal containers are made of corrugated sheet metal. The VLP-16 LIDAR sensor is 
accurate enough to detect the depth variation on the side surface of these containers. Therefore, 
two variables (TrSSD and TrIQR) are defined to capture that information. To do so, similar to the 
analysis above, a rectangular region away from the estimated sides of the trailer is selected. A 2D-
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plane is fit to the depth data (z-coordinate) by using an ordinary linear regression model. This 
plane in essence represents the average z-coordinates of the side surface of the trailer. The 
deviations or residuals from this plane are then calculated. The two variables, TrSSD and TrIQR, 
are defined as the standard deviation and interquartile range of these residuals, respectively.  
 

Top Density (TD) and Bottom Density (BD) 
Dry vans and refrigerated dry vans look the same except the later has a refrigerator unit attached 
to the dry van’s frontend. The refrigerator unit doesn’t cover the whole spaces on the frontend. 
There is a gap between tractor chassis and underneath of the refrigerator unit, as seen in Figure 9. 
Therefore, in the 2D profile of a refrigerated unit, there are more LIDAR points observed at the 
top section protruding forward from the trailer. This information can be captured by defining two 
regions (rectangles) at the frontend of the trailer. Since the x-coordinate of the frontend is 
estimated, we can go a certain distance towards the tractor (about 2.5ft) from the trailer edge (see 
the highlighted section in Figure 9) and calculate the density of points in a rectangle close to the 
top of the trailer and another rectangle to the bottom of the trailer. The heights of the bottom and 
top rectangles are taken as 2ft and 4ft respectively. We then simply count the number of grid cells 
that are not empty and divide the count by the area of the rectangle to find the density of points.  
 

Overhang 
Another useful variable is the overhang distance or the distance from the trailer end to where the 
rear tandem axle is. This distance is quite small for intermodal trailer containers whereas it is 
typically larger for enclosed or dry vans. Rather than attempting to measure the overhang distance 
from the 2D profiles, we use a 2ft high by 4ft long rectangle starting at the origin of the coordinate 
system and measure the density of points within this rectangle. This turns out to be a good surrogate 
variable to capture the variation in rear overhang among the trailers of different types.  
  

 

Bottom density in reefer area 

Top density 
in reefer area 

Overhang 

Trailer Top 

Bottom 

Frontend Backend Trailer Surface 

Figure 9 Extracted features annotated on a 2D profile of a refrigerated dry van 
 
 
Heuristics Method 
After applying the SVM model, the unknown truck data are now labeled as either dry van or 
intermodal container. In the second step, a heuristic is implemented to detect whether there is a 
refrigerator on the trailer unit. This is accomplished by using the following two variables:  
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• Top density (TD) 
• Bottom density (BD)  

The ratio of BD to TD is calculated. If this ratio is less than a threshold (here taken to be 0.7 per 
performance on the training samples) then, this will indicate that there are many more LIDAR 
points observed at the top region, and hence a refrigerator unit is assumed to be present on the 
trailer.  
 

Table 6 shows the results of the two-step approach explained above. The SVM model 
correctly identifies the trailer types with 98%, 98%, and 93% accuracy for intermodal containers, 
dry vans, and other trailers, respectively. In step 2, in order to separate refrigerated and non-
refrigerated trailers from the dry vans and intermodal trailers, the heuristic method explained above 
is applied. This method also shows high accuracy ranging between 90% and 100%.  Table 6 also 
includes results from Hernandez et al. study [1] which proposes a classification method for truck 
body configuration using weigh-in-motion and inductive loop signature data. For all cases, the 
proposed method in this study gives more accurate results most likely due to the richer LIDAR 
data and more pertinent information and features extracted from the raw data.  It is interesting to 
note that both methods have the best performance in the refrigerated intermodal category and 
lowest in the refrigerated dry (or enclosed) vans.  
  
 
Table 6 Results from the SVM and Heuristic 

 Proposed Method Hernandez et al 
(2016) Study 

Trailer Type 
Number of 

test 
samples 

CCR 
(Correct 

Classification 
Rate) 

Number 
of test 

samples 

Best CCR  

Step 1 (Classification 
Method): SVM   

Dry van 572 98%   
Intermodal 
container 329 98%   

Other 98 93%   
Step 2 (Heuristic):    

Dry van 369 94% 2,329 83.8% 
Refrigerated dry 
van 203 90% 1,565 75.3% 

Intermodal 
container 298 94% 131 87.8% 

Refrigerated 
intermodal 
container 

31 100% 16 93.8% 

 
 
Transfer Learning Method 
In the transfer learning method, a pre-trained model would be chosen as a feature descriptor or 
extractor. Over the years, researchers developed various architectures of deep learning to solve 
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challenging object recognition problems. Of these, VGGNet, AlexNet, and ResNet are well-known 
and popular as each of these achieved high levels of accuracy in classifying objects in large image 
databases. Therefore, in this study, to find out which pre-trained model would be more suitable for 
transferring the learnings to the truck trailer classification, three deep CNN models, i.e., VGGNet, 
AlexNet, and ResNet, have been investigated. Features extracted from these pre-trained models 
become the selected features and can be used as input to any classification algorithm. In our 
previous study [9], we demonstrated how the features from a pre-trained ResNet model could be 
utilized for truck classification based on camera images. The features from ResNet are used as 
input to a Multi-Layer Perceptron (MLP) neural network which is shown to outperform other 
machine learning algorithms such as SVM or Kth Nearest Neighbors [9]. In this study, we extend 
the transfer learning idea for solving the truck classification problem by considering additional 
well-known deep NNs and applying them to a new type of dataset, i.e., LIDAR point cloud data 
expressed as an image.    

All three CNN models listed above are already trained on the ILSVRC dataset. Since the model 
is pre-trained, extractions of the already learned features and using them directly will save a great 
amount of computation time. However, features in a CNN grow in complexity as we step deeper 
into the network. Therefore, a key task is determining the optimal point at which the pre-trained 
model structure should be cut or stopped in order to get the right level of feature complexity for 
our task. Four different positions for the feature extraction has been investigated on all three 
models as shown in Figure 10 & Figure 12. The features extracted from these models are used as 
the feature descriptors for the respective MLP classifier which has two fully connected layers. 
Hyper parameter optimization of this classifier was done through a simple grid-search to find the 
optimum number of hidden units in each fully connected layer. The implemented MLP classifier 
has 128 hidden units for the first layer and 64 hidden units for the second one, the learning rate is 
0.001, and 200 epochs of training was done. Some specific details of the three deep networks are 
provided below.  

In 2012, Krizhevsky et al. have developed AlexNet which outperformed all the models at the 
ILSVRC 2012 competition. AlexNet is one of the most popular CNNs and usually would be 
considered as a baseline model. It has five convolutional layers followed by three fully connected 
layers. The size of the input image for this model is 227 × 227 × 3  and consecutively, number of 
units in each layers are 96, 256, 384, 384, 256, 4096, 4096, and 1000. The first-, second-, and fifth-
convolutional layers are followed by maxpooling layers. The first and second maxpooling layer is 
followed by local contrast normalization. The nonlinear activation function of each unit is the 
rectified linear units (ReLUs). The architecture of the model with the details and proposed position 
for feature extraction is shown in Figure 10. 

The VGGNet had an outstanding performance in the ILSVRC 2014 competition by winning 
the second place. It consists of 16 convolutional layers and the structure is uniform. The model 
characteristics are similar to AlexNet but number of filters are more. One drawback of this model 
would be the big structure, which has around 138 million parameters. It takes lots of computation 
power to train this model on ImageNet dataset. The high number of filters in this model makes it 
one of the most preferred choices as a feature extractor. The architecture of the model with the 
details and proposed position for feature extraction is shown in Figure 10. 
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Figure 10 The architecture of AlexNet (left) and VGGNet (right) 
 

ResNet model proposes residual learning blocks to solve the degradation problem caused by 
multiple nonlinear layers. By using residual learning, if the optimal solution for a specific case is 
closer to an identity mapping (i.e., the output is a slightly altered version of the input), the solvers 
can reach it by simply driving the weights of the multiple nonlinear layers toward zero. This way, 
the solver should converge easier by retaining the input rather than learning the function like a new 
one. The mathematical formulation of the added residual learning units can be expressed as: 

 
𝑦𝑦 = 𝐹𝐹(𝑥𝑥, {𝑊𝑊𝑖𝑖}) + 𝑥𝑥 

 
Figure 11 Identity block 

 
Where 𝑥𝑥 and 𝑦𝑦 are, respectively, the input and output vectors of the layers considered; and the 

function 𝐹𝐹(𝑥𝑥, {𝑊𝑊𝑖𝑖}) represents the residual mapping to be learned. The architecture of this building 
block is represented in Figure 11. The added shortcut solves the degradation problem without 
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introducing extra parameters or computation complexity. The ResNet architecture used in this 
article has 151 convolutional layers and a final dense layer with a Softmax activation function. 
The structure of the model, along with its respective hidden units, is presented in  Figure 12. As it 
can be seen, a residual learning block is defined for every few stacked layers (yellow boxes). 
Building blocks are shown in white boxes with the numbers of residual blocks stacked written on 
the right (i.e.,× 3). Down-sampling is done by blocks conv3_1, conv4_1, and conv5_1 with a 
stride of 2. 
 

 
 
 
 
 
 
In summary, Table 7 presents some of the characteristics of these three models. 

Figure 12 The architecture of ResNet 
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Table 7 Some of the characteristics of the pre-trained models 

 ResNet VGGNet AlexNet 

Number of layers 152 16 8 
Number of convolutions 151 13 5 
Number of parameters (M) 60.2 138 62.3 

 
There are many categories of truck body configurations that one can consider [1]. In this study, 

four of the most challenging categories have been selected for classification, i.e., trailers with 
containers and enclosed vans with or without refrigerator. As it is shown in Figure 13, the four 
examined body types are very similar in structure and shape. The total number of truck profiles 
used in this study is 4,714 out of which 1,628 are enclosed vans, 1,032 are refrigerated enclosed 
vans, 1,869 are containers and the rest are refrigerated container. The profiles have been saved as 
images resized to be consistent with the pre-trained input of CNNs. 80% of the data are used for 
training, and the rest is set aside to be used as the test data. Ground truth labeling of these images 
was done manually. All computations in this article were conducted with Tensorflow platform on 
Windows 7 OS with Intel Xeon E5-2630 2.40 GHz and an NVIDIA Quadro K4200 GPU with 4 
GB memory. Since parameters of the pre-trained models are fixed and would not change during 
the training, it is intuitive to do the feature extraction only once and save them to perform the 
training faster. Table 2 presents computation time needed for feature extraction of each algorithm 
on four level of complexity on all datasets. While the number of parameters for ResNet and 
AlexNet are almost the same (Table 7) but their computation time is significantly different which 
is due to the deep network of ResNet (152 layers). The VGGNet is not as deep as ResNet but still 
has a significant difference with the AlexNet in terms of computation time which is because it has 
a much wider network (number of parameters). 

 
Table 8 Computation time for feature extraction for all images in the dataset  

 Computation time (min) 
Level of complexity  ResNet VGGNet AlexNet 

Features_for_Classifier_1 10.8 11.3 1.4 
Features_for_Classifier_2 15.8 18.8 1.5 
Features_for_Classifier_3 40.3 26.5 1.6 
Features_for_Classifier_4 44.4 29.7 1.7 

Total  111.3 86.2 6.2 
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Figure 13 Sample truck types and their projected merged cloud point data onto a 2D surface. 
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Four different placements of the MLP classifier, as shown in Figure 10 and Figure 12, have been 
tested to identify the optimal point at which the pre-trained structure should be cut. A K-fold cross-
validation procedure has been used to measure accuracy with K equals to 5. Accuracy is the 
fraction of correct predictions over total number of predictions. This method of accuracy 
calculation ensures that model is not over fitted. The average accuracy results for 5-fold cross-
validation of each model on the test data are presented in Table 9.  
 
Table 9 Average accuracy (%) of 5-fold cross-validation for proposed positions for the 
classifier 

Models ResNet VGGNet AlexNet 

Classifier_1 89.3 88.6 85.7 
Classifier_2 96.5 93.4 97.5 
Classifier_3 92.2 92.3 92.4 
Classifier_4 90.4 90.7 89.9 

 
In all models, the Classifier_1 is the worst performing model in the classification task. 

Features are primary and basic at this level of the network and the Classifier_1 struggles to 
correctly identify the correct truck types based on these features. Examples of possible features at 
this level will be a color change, the shape of lines, edges, etc. It is evident that it is hard to identify 
between a container and an enclosed van using these simplistic features. Features grow in 
complexity as we go deeper in the network and Classifier_2 will get more complex features from 
the pre-trained CNN compared to Classifier_1. By the same logic, Classifier_3 and Classifier_4 
should be more accurate than their proceeding peers. However, the performance of the last two 
proposed placements are lower than Classifier_2. This happens because the features beyond 
Classifier_2 are becoming unnecessarily complicated for the classifier to distinguish between these 
two vehicle classes. The features at these deeper layers might be appropriate for the wide range of 
images they are trained on but not for the relatively simpler problem being solved in this study. 
This trend is consistent between all three models. In other words, the optimal point for selecting 
the best-suited features for classification of vehicle classes is about 2 4�  down the given network. 
In this case, the first 33 layers of ResNet_152, the first 7 layers of VGGNet, and the first 3 layers 
of AlexNet have the best performance for the feature extraction task. 
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Figure 14 Convergence of the MLP model accuracy for Classifier_2 of ResNet 
 
The convergence of model accuracy for the Classifier_2 of ResNet as an example is presented in 
Figure 14. An epoch is when all the training samples are used once to update the weights of the 
MLP by the optimization algorithm that iteratively improves the model variables (e.g., weights). 
The accuracy of test data follows approximately the same trend as the accuracy of training data, 
and after around 100 epochs the model becomes steady.  

The confusion matrix of each model summarizing the testing results is shown in Table 2. 
The whole numbers correspond to the number of samples and the values in parenthesis are 
percentage of them with respect to the total number of samples in that category (i.e., total number 
of samples in the row). It is evident that all three models produce comparable accuracies and 
misclassification is a slightly skewed towards containers. The accuracies are a bit lower for 
refrigerated trailers (i.e., Ref Containers and Ref Enclosed VAs). For example, in the AlexNet 
model, the containers are classified with 98% accuracy whereas refrigerated containers with 90%. 
Perhaps, the relatively lower accuracy in the refrigerated containers category could be attributed 
to the lower number of samples in this category (201 samples) as compared to the other three. It 
should be noted that the misclassifications are almost always between a trailer type and its 
refrigerated counterpart. If these are ignored, i.e., if the trailer type and its refrigerated counterpart 
are considered as one class, the AlexNet model produces about 98% accuracy in distinguishing 
between these two more aggregate classes.  
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APPENDIX A 
Labeling of each LIDAR frame (rows) and beam (columns) belonging to individual vehicles 
numbered consecutively (numbers in the table) 
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