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PROBLEM

Understanding the types and volumes of different commodities being hauled over the roadway
network is an important aspect of the freight planning process. To adequately allocate resources
for accommodating commercial freight delivery and distribution across the highway network
public agencies need to predict the quantity and type of the commodities. However, collecting
commodity-specific freight data is a challenge. The Census Bureau conducts a Commodity Flow
Survey (CFS) every five years at the national level. The CFS is a primary source for the freight
analysis framework. However, the CFS may not be representative at the state or metropolitan
levels, therefore, there is a need to collect this information for planning and monitoring purposes
using the currently available technologies. There are various types of sensors for vehicle detections
and classification (e.g., inductive loops, weigh-in-motion (WIM) sensors, radar), and they provide
the raw data needed to classify vehicles into a predefined set of classes such as FHWA’s 13-class
scheme. These schemes or algorithms work mostly based on the number of axles and number of
trailers and do not provide much details about the type of trailer attached to the truck. Categorizing
trailers into subclasses (e.g., container, dry van, refrigerated vans, tank, and car transporter) will
help narrow down the type of commodity that is being carried. For example, refrigerated trailers
are commonly used to transport perishable produce and meat products, tank trailers are for fuel
and other liquid products, and livestock is carried in specialized trailers. The main goal of this
project is to investigate the feasibility of using data from non-intrusive sensors (e.g., camera and
LIDAR) to identify the type of trailer. Algorithms are developed to demonstrate the feasibility of
accurately detecting and classifying the trailer types.

APPROACH

The main focus of this project is to investigate how emerging sensors could be utilized in
categorizing trucks into more distinct classes beyond the common classes (e.g., FHWA’s 13
classes). In particular, data collected by a 3D LIDAR sensor are analyzed to extract pertinent
information for classifying truck trailers into subtypes. Raw point-cloud data from these sensors
include distance to the target and intensity of the reflected light. From these data, it is possible to
construct a 3D representation of the objects within the range of the sensor. As explained later in
the report, a LIDAR unit along with a set of surveillance cameras are used to collect data at a
specific location on I-64 in Hampton Roads, VA. The collected data include samples of four trailer
types: Intermodal container, refrigerated container, dry van, and refrigerated dry van. After data
processing, various machine learning algorithms are developed to automatically classify observed
trucks into these four subcategories.

It should be mentioned that data from other types of sensors could also be utilized to
classify trucks into subcategories. For example, recently, researchers show how WIM and
inductive loop signature data [1] could be used to detect truck body types. Since such options have
been explored previously, this study is focused on the emerging technology of LIDAR for traffic
data collection. The classification results obtained based on the LIDAR data will be compared to
those in the literature [1].
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METHODOLOGY

The data needed to conduct this research come from a LIDAR unit and a set of surveillance
cameras. The video collected by the cameras is used for ground truth and model validation. The
LIDAR and surveillance cameras continuously collected data for 36 days. After data collection is
completed, the data are preprocessed for further analyses and feature extraction. For each
individual vehicle observed, the point cloud data from multiple LIDAR frames are combined to
generate a 2-dimensional profile. These profiles form the basis or input data to the machine
learning algorithms. Two machine learning methods are developed to classify truck body types:

1. The first method involves extracting useful features from the 2D-profiles which are then
taken as inputs to a Support Vector Machines (SVM) model. Support Vector Machines
(SVM) solves an optimization problem to find the optimal hyperplane to separate classes
[2] based on the features and labels of the training data. The SVM model classifies the
trucks into three groups: Dry van, intermodal container, and other. After this grouping, a
heuristic is developed to detect whether a truck classified as either dry van or intermodal
container has a refrigerated unit or not. In the end, these two steps (SVM and the heuristic)
will classify the trucks into the four types described earlier.

2. Inthe second method, deep Convolutional Neural Networks (CNNs) are used which do not
require extracting specific features as inputs. In particular, rather than developing and
training new deep CNNs, some of the well-known pre-trained models (VGGNet, AlexNet,
and ResNet) are customized to solve the classification problem. This method is called
“transfer learning” since many of the parameters of these pre-trained models are kept the
same. These models (VGGNet, AlexNet, and ResNet) are extensively trained to solve
challenging object recognition problems.
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The two methods described above are first developed based on some training data. They are then
applied to test data to evaluate their performance in terms of how accurately they classify the truck
body types. Their performance is summarized in terms of a confusion matrix that shows both
accurate classification and misclassified trucks.

Table 1 shows the confusion matrix for the first method where the rows represent the actual
class and columns the predicted class. The whole numbers correspond to the number of samples
and the values in parenthesis are percentage of them with respect to the total number of samples
in that category (i.e., total number of samples in the row). Most of the samples are correctly
classified. While the overall accuracies are higher than 90%, more refinements can be made to the
models to improve these accuracies.

Table 1 Confusion Matrix for the SVM and Heuristic Method

Predicted
Container Ref Ref Enclosed Van Enclosed Van
Container
Container 279 12 1 6
(93.62%) (4.03%) (0.34%) (2.01%)
° Ref Container 0 29 2 0
S (0.00%) (93.55%) (6.45%) (0.00%)
= 0 2 185 16
Ref Enclosed Van |, 50, (0.99%) (91.13%) (7.88%)
Enclosed Van 4 0 18 347
(1.08%) (0.00%) (4.88%) (94.04%)

For the second method, the confusion matrix of each model summarizing the testing results is
shown in Table 2. It is evident that all three models produce comparable accuracies and
misclassification is a slightly skewed towards containers. The accuracies are a bit lower for
refrigerated trailers (i.e., Ref Containers and Ref Enclosed VAs). For example, in the AlexNet
model, the containers are classified with 98% accuracy whereas refrigerated containers with
90%. Perhaps, the relatively lower accuracy in the refrigerated containers category could be
attributed to the lower number of samples in this category (201 samples) as compared to the

other three. It should be noted that the misclassifications are almost always between a trailer type

and its refrigerated counterpart. If these are ignored, i.e., if the trailer type and its refrigerated
counterpart are considered as one class, the AlexNet model produces about 98% accuracy in
distinguishing between these two more aggregate classes.




Table 2 The confusion matrix of all three CNN models

AlexNet
Predicted
Container | Ref Container | Ref Enclosed van | Enclosed van
Contai 1832 7 3 20
ontamer (98.38 %) | (0.38%) (0.16 %) (1.07 %)
Ref Contai 20 181 0 0
2 chi-omtamer | 995904) | (90.05 %) 0 %) 0 %)
1 ¥
= Ref Enclosed 1 0 1003 44
cLERCloseavan | .1 %) (0 %) (95.70 %) (4.20 %)
Enclosed van 14 1 24 1564
(0.87 %) (0.06 %) (1.5 %) (97.57 %)
VGGNet
Predicted
Container | Ref Container | Ref Enclosed van | Enclosed van
. 1802 32 5 23
Container
(96.78 %) (1.72 %) 0.27 %) (1.24 %)
° Ref Container 65 136 0 0
Q (32.34 %) (67.66 %) (0.00 %) (0.00 %)
L
[
Ref Enclosed van 6 0 276 66
(0.57 %) (0.00 %) (93.13 %) (6.30 %)
19 1 106 1477
Enclosed van
(1.19 % (0.06 % (6.61 % (92.14 %
ResNet
Predicted
Container | Ref Container | Ref Enclosed van | Enclosed van
. 1821 5 2 34
Container
(97.80 %) (0.27 %) (0.11 %) (1.83 %)
° Ref Container 31 169 0 !
2 (15.42 %) (84.08 %) (0.00 %) 0.5 %)
1 ™
[
Ref Enclosed van 2 0 1006 40
(0.19 %) (0.00 %) (95.99 %) (3.82 %)
Enclosed van 19 ! 30 1553
(1.19 %) (0.06 %) (1.87 %) (96.88 %)
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CONCLUSIONS

This study demonstrates that LIDAR data could be effectively utilized to accurately predict truck
trailer types. The presented methodology for processing the data involves a series of statistical
models, heuristics, and machine learning algorithms to extract pertinent features to distinguish
between different truck body types. After extracting key features, a Support Vector Machine
(SVM) model is trained to determine whether the subject truck is hauling an enclosed van or an
intermodal container. The results of the SVM model on test data show very high level of accuracies
at around 98%. After determining the body type, the presence of a refrigerator unit is detected by
a heuristic method that searches the density of points at the frontend of the container or dry van.
This method also yields relatively high accuracy rates between 92% and 96% on the test data.

In addition to SVM method a transfer learning model is developed. Since the simple or
basic features for any type of image datasets are the same, it was possible to transfer features
learned by a pre-trained model (ResNet 152, VGGNet, AlexNet) to another classifier and build
highly accurate models with relatively small datasets. Four of the most challenging categories of
trucks are chosen to train the model. Four different experiments are conducted to find the optimal
level of complexity for transferring learned features. It is shown that the first 33 layers of the
ResNet 152, the first 7 layers of VGGNet, and the first 3 layers of AlexNet have the best
performance on this dataset. With any one of the three CNNs analyzed here, as long as the optimal
point for transferring the learning (or features) is selected, it is possible to get around 97%
classification accuracy. The computation time for feature extraction shows that it is better to use a
shallower CNN models with less parameters for this specific problem since the accuracy of more
complex models are almost the same. Results from the confusion matrices show that the models
are very accurate (~98%) in distinguishing between enclosed vans and containers, and trucks with
refrigerator units (the refrigerator containers or refrigerator enclosed vans) are more prone to be
misclassified. The AlexNet model was found to be computationally more efficient to implement
and yielded classification accuracies higher than 90% for each one of the four truck body types.

Clearly, the scope of this study is limited in terms of the variety of truck body types
considered. However, the authors believe that similar models could be developed to capture salient
features for other truck body types, some of which have easily distinguishable characteristics such
as tanks and empty flatbeds. This research will ultimately enhance freight and commodity
modeling research by providing a detailed breakdown of truck body types at observation stations
where a LiDAR sensor is installed.

COMPLETE DOCUMENTATION

This section provides a detailed overview of all the work undertaken in this project including
literature synthesis, data collection process, data description, post-estimation analysis, and
experimental work.

Past Literature:

Vehicle classification plays a significant role in almost all aspects of transportation engineering
and planning applications. In mid 1980s, the FHWA developed a standardized 13-category vehicle
classification rule set which meet the needs of many traffic data user applications, such as highway
and pavement design, performance monitoring, tolling, transportation planning, and freight
planning and modeling, etc. The rule set is designed to classify visual descriptions of vehicles
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using axle-related metrics, such as the number of axles, axle spacing, number of trailers, and
vehicle length with the available intrusive and non-intrusive equipment. The intrusive equipment
includes inductive loops, road tubes, and piezo sensors, etc. [3]. The non-intrusive equipment
includes video detection system, passive infrared, radar, etc. [3]. The complete list of common and
current data collection technologies can be seen in Table 3 [4]. In general, rule-set separates
vehicles into categories depending on the passenger vehicles or commodities. For some
engineering and planning analyses, people use a generalized 4-bin categorization which include
cars, small trucks, large trucks, and multi-trailer trucks.

Table 3 Common technologies for vehicle classification.

Axle-Based Length-Based
Infrared (passive) (NI) Dual inductive loops (1)
Laser radar (NI) Inductive loops (loop signature) (I)
Piezo-electric (I) Magnetic (magnetometer) (I)
Quartz sensor (I) Video detection system (NI)
Fiber optic (I) Microwave radar (NI)
Inductive Loop Signatures (I) CW Doppler sensors (NI)
Capacitance mats (I)
Bending plates (I)
Load cells (I)
Contact switch closures (e.g., road tubes)
Specialized inductive loop systems

Key: Non-Intrusive (NI), Intrusive (I), Source: (FHWA 2016)

However, 4 bins category is not sufficient for some applications, such as estimation of
pavement loads or freight planning and modeling. In order to have suitable data for analysis, in
2003, the Transportation Research Board (TRB) Expert Task Group (ETG) on Long-Term
Pavement Performance (LTPP) Traffic Data Collection and Analysis developed a new set of rules
for classifying vehicles based on sensor outputs available from WIM systems [5]. This rule-set is
sufficient for pavement and bridge designs but for freight planning and modeling there is still need
for more detailed information of the truck characteristics, such as refrigerated, tank, specialized
trailers, etc. FHWA and LTPP rule-sets cannot distinguish detailed characteristics of the truck
trailers. It is important to know the type of commodity to support freight demand modeling [6].
For classifying truck body types, researchers applied machine learning algorithms to loop signature
and WIM data [1]. Researchers also used WIM data to unanimously re-identify trucks between
two observation sites to support freight modeling [7, §].

Having access to more detailed truck characteristics may help reveal information about the
commodity being carried. For example, refrigerated trailers are commonly used to transport
perishable produce and meat products, tank trailers are for fuel and other liquid products, and
livestock is carried in specialized trailers. It is obvious that not all commodity types can be easily
inferred from the externally observable characteristics of the truck or trailer, however, it is possible
to narrow the possible types of commodities if the trailers are classified into distinct categories
(e.g., car-transporter, tank, enclosed van, intermodal container, empty platform or trailer). Non-
intrusive sensors are also widely used for vehicle classification but again they do not provide truck
trailer or commodity type. However, researchers have attempted to classify vehicles from data
from surveillance cameras [9, 10]. Another non-intrusive sensor is Light Detection Area Ranging
(LIDAR) which is becoming widely available in the transportation field due to the recent research

6
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and developments in automated driving technologies. In this technology, the raw point-cloud data
from these sensors include distance to the target and intensity of the reflected light. From these
data, it is possible to construct a 3D representation of the objects within the range of the sensor.
Researchers have recently investigated how these sensors could be used for monitoring traffic flow
and estimating vehicle trajectories [11-13] and for evaluating highway safety issues [14, 15].

The Artificial Neural Network (ANN) idea has been around since 1960 [16]. There have
been many studies using ANN as a machine learning approach in all engineering fields including
the transportation community [17]. The advantage of ANN over classical machine learning
approaches such as SVM is the ability of this method to perform feature extraction and selection
automatically. To get the best performance out of classical methods, researchers need to select the
best features to represent the data, which is time-consuming and involves some heuristic
procedures. In a sense, for classical methods, some part of the learning has to be done by the
researcher. Up to a few years ago, the performance of ANNs and classical methods were almost
the same. With the recent advancements in computational power and an increase in the
accumulation of data, researchers have noticed an interesting pattern in the performance of
machine learning algorithms. The performance of ANNSs increases rapidly with more data while
the performance of classical methods would not get better after a certain point. This observation
has led to increase in new studies about ANNs in the field of computer science. For some tasks,
such as image retrieval [18], object detection, and tracking [19, 20] ANN has reached a state of
the art performance. Convolutional Neural Network (CNN) image classification is one of the most
successful methods in neural network research. It can find the properties of different categories
much more accurate than other methods. The drawback of CNN is the need for the tremendous
amount of training data and computation power because the model has to optimize numerous
parameters in its network structure [21]. Recently, this method got popular among transportation
researchers. One study was able to detect cracks on hot-mix asphalt and Portland cement concrete
using pavement images with the help of deep CNN [22]. Other researchers have used CNNs for
vehicle detection based on satellite images [23] and vehicle classification based on video from
surveillance camera [24].

The training process of deep CNNs is time-consuming and needs a huge amount of
computational power. Moreover, it can easily lead to overfitting. Some researchers have tried pre-
training and fine-tuning strategy to overcome this limitation [25]. They have pre-trained a
GoogleNet model [26] on the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
2012 dataset to find the initial model. Then using 13,700 images extracted from surveillance
cameras, they have fine-tuned the initial model. This approach has reached around 98% accuracy
in classification of vehicles. This strategy would solve the overfitting problem but the pre-training
procedure is still computationally intensive. By visualizing learned features of CNN [27],
researchers have noticed that the network always learn low-level features at the beginning layers
and consecutively features would become more complex as you go deeper into the model.
Independent from the dataset, low-level features are always the same for almost any type of
images. It would be intuitive to keep low-level features learned from one dataset and transfer that
knowledge to perform classification on different dataset. This method uses the feature descriptor
parts of an already existing trained model such as AlexNet [28] and replaces the classifier part
with a new task-specific model. This type of modeling practice is called “transfer learning.” Many
researchers have used transfer learning to improve the accuracy and proficiency of new models
with limited training data [29-32].
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There are many CNN models trained on ImageNet dataset [21] that can be used as pre-
trained CNN including AlexNet [28], VGGNet [33], and ResNet [34]. In this study, we have
investigated the implementation of transfer learning on these three pre-trained models to find the
best performance for the classification of truck images generated from data collected by a 3D
LiDAR sensor.

Data Collection

A Velodyne VLP-16 LIDAR [35] along with a camera system was installed on 1-64 WB in
Hampton Roads, VA. More specifically, it is installed on the post carrying the last VMS gantry
before the Willoughby Bridge on the Willoughby Spit side, as seen in Figure 1. Surveillance
camera and LIDAR timestamps were synchronized so that the same truck can be found in LIDAR
files.

Since trucks are prohibited from traveling in the left lane, LIDAR data collection is limited
to the rightmost lane. The LIDAR sensor is approximately 22 ft. above ground and 20 ft. away
from the edge of the travel lane. The LIDAR sensor and the surveillance cameras are oriented to
get good coverage of the vehicles traveling in the right lane.

>

Figure 1 LIDAR and surveillance cameras mounted on the gantry pole before the
Willoughby Bridge

The VLP-16 LIDAR sensor comes with 16 beams, which covers a 30° view angle with
360° rotation around its internal z-axis. The LIDAR frequency is 10 Hz, which provides a very
rich cloud point dataset. The data points measured by its 16 beams within one complete rotation
are called a scan or frame. The unit can be installed in a vertical or horizontal (or any other angle)
scanning mode depending on the application. If it is mounted horizontally (Figure 2a) on the
roadside, it covers a maximum of 50 meters from the sensor in the longitudinal direction of the
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roadway, but it will not result in a dense sets of points for each individual vehicle observed. In a
vertical configuration (Figure 2b), it covers about a 3.5 meters longitudinal section of the roadway
and provides a greater density of points per vehicle. Most passenger vehicles can fit within this
range, but vehicles longer than 3.5 meters will not. Therefore, multiple scans or frames need to be
combined to create full 3D or 2D profiles of trucks. For this research, the LIDAR is configured in
the vertical orientation as shown in Figure 2.

(a) (b)
Figure 2 LIDAR orientation (a) horizontal and (b) vertical.

Since trucks are travelling only in the right lane, LIDAR points reflected from objects
elsewhere can be excluded from the dataset. Thresholds were established to eliminate these
redundant data points. Figure 3 shows a complete LIDAR scan, whereas Figure 4 has the remaining
data points after removing the redundant data. All the analyses are performed with the subset of
points belonging to vehicles traveling on the right lane, as in Figure 4.

Figure 3 A full scan or frame from the LIDAR sensor
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Data Preprocessing

Coordinate Transformation

The LIDAR sensor provides the position of each point in its own a 3D Cartesian coordinate system,
as defined in Figure 2 (a). This coordinate system may not be fully aligned with the travel lane.
Therefore, the raw data are transformed to a new coordinate system where the x-axis is along the
travel direction, the y-axis is perpendicular to the roadway surface, and the z-axis the lateral
direction. This transformation is simply accomplished by identifying unit vectors along these three
directions. Then, the points are transformed to the new coordinate system by employing a rotation
matrix, a commonly used coordinate transformation method.

As seen in Figure 4 (a), a truck enters the field of view of the LIDAR. After coordinate
transformation is applied to the raw data, it is recreated as shown in Figure 4 (b) with all the original
data preserved. Working in the new coordinate system facilitates the remaining steps where speed
is estimated for merging multiple frames as explained next.
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LIDAR (Fe LIDAR (Fe
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(a) (b)

Figure 4 Before (a) and after (b) coordinate transformation

Speed Estimation

As explained above, the entire truck does not fit within the detection zone or the field of view of
the LIDAR. Therefore, to generate the full truck profile, multiple frames need to be merged. This
can be done if the speed at which the truck is traveling is known. Using the first two consecutive
frames and the time instances when the truck enters the scan zone of each beam, the speed of the
vehicle can be estimated since the distance between individual beams is known. Likewise, as the
truck is departing the detection zone, the last two frames can be utilized in the same manner to
estimate another speed. In fact, as long as the vehicle is not occupying the entire set of 16-beams
in two consecutive frames, data from such frames can be used similarly to estimate speed. These
speeds are then averaged to find a constant average speed for the vehicle. It should be noted that
this precision of this method is limited since the distance can only be measured in increments of
the distance between two consecutive beams. For this installation, this increment is about one foot.
Given the fact that the time between two frames is 0.1 seconds, this discretized measurement of
travel distance translates to approximately =7 mph maximum error (worst case) for a truck
traveling around 50 mph. However, since multiple estimates are utilized the actual error is expected

10
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to be lower than this. The research team did not have a speed-measuring sensor at the site to
quantify the error in the estimated speeds.

Merging Multiple Frames

Based on the estimated average speed, the frames belonging to the same trucks are then merged
by shifting the consecutive frames accordingly. A reconstructed sample 2D profile of a truck is
shown in Figure 5. To facilitate more efficient computation, the 3D LIDAR points are projected
onto a 2-dimentional x-y grid where each cell is 2 inch by 2 inch. A typical FHWA Class 9 truck
spends about 1-2 seconds within the LIDAR detection zone at free flow speed. Within this time,
LIDAR generates around 30,000 points. Projecting the data to the 2D grid reduces the computation
load needed to process this large number of points per truck. This projection reduces the data points
drastically to around 1,000 points. The bottom plot in Figure 5 represents the 2D profile of the
truck that is generated after merging the cloud points of the truck in the top picture. Each cell of
the truck profile is 2in by 2in and color scale represents the average of z-coordinates (or depth) of
raw 3D points corresponding to that grid point.

1% n % {0 W% m 14 0 8 fll s mn

Figure 5 Merged cloud point data projected onto a 2D grid (bottom) and the corresponding
truck image (top).

11
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Height Estimation

The heights of individual points of LIDAR data from the roadway surface are found by the
following process. First, LIDAR frames belonging to a specific truck are labeled. This process
involves consecutively numbering all vehicles passing under the detection zone and assigning each
LIDAR beam and frame to the corresponding vehicle. Appendix A shows a sample table
demonstrating how point cloud data belonging to individual vehicles (or vehicle IDs) are labeled
and extracted from the raw LIDAR data tables. Once points are grouped by vehicle IDs, the height
of each individual point is computed with respect to the roadway surface. This is accomplished by
using basic geometry and the equation of a point to a plane (i.e., roadway surface) — see Figure 6.
The plane equation is found by fitting a surface plane to the data collected when there is no vehicle
in the detection zone (roadway surface of the right lane).

"l’xu-}’n-zn)
Ly
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r =
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Figure 6 Equations used to calculate the height of a given point on a vehicle to the roadway
surface represented by a plane

Ground Truth Labeling

The process explained above is applied to every vehicle passing under the LIDAR detection zone.
Then each vehicle’s LIDAR cloud points and actual images which is extracted from the video are
stored in a relational database. A custom tool shown in Figure 7 is developed for visually matching
LIDAR data with vehicle images along with fields for inputting the vehicle configuration such as
truck body type, number of axles, etc.

Old Dominion University - Transportation Research Institute - Vehicle Classification Tool

Select by Images Selected Vehicle Info
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17-10-27 10:04:35.2

20171027 to 20171027

d Speed: 47.43388
#0f LIDAR Frames: 13
Class Group: MUT
Length(Ft): 73.43082
Height(ft): 13.5876

Filter by

HPMS Group Class
MC O PV 0T O SUT @ MUT
<Y © Previous Record Next Record
Lidar and picture match? Lidar data merged OK?

@ Include Predicted by Include rainy @ Y N @Y N
fes o fes o

Processe d model days

@ Reefer Dryvans Containers Reefer

Vehicles

Show| 100 ¥ |entries Searcht Lidar Profile

id vehid max_height_inch_6 v veh_lens

Distance to i :
e Select Trailer Body:

oo Drop Frame Van -
s
" Select Drive Unit Body:

Conventional Sleeper Cal -

Drive Unit Axles:

2754 20171027100435.200 163.051269683805

5060 20171027130341.599 161.278355811342

k)
Lengthifeet)
2100 20171027002717.209 1612548392533 Single @ Tandem () Tridem

Trailer Axles:
Single @ Tandem () Tridem ([ Four (J 2Single

- 2 MATCH 2 Update OReset

10071 20171027160741.400 161.207803814127
Unit:Multi

Showing 1 to 26 of 26 entries Previous ‘ 1 ‘ Next
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Testing and Training Dataset

For this study, only a small subset of the data are utilized since manually labeling vehicles into
different categories is time consuming. We selected several days without precipitation, and time
periods during daylight times to extract images and LIDAR data. Overall, 3,336 trucks are
manually labeled and verified from the video files. These trucks and their classes are listed in Table
4. Sample truck images belonging to each class are shown in Figure 13. The sample is split into
two groups: training and testing. The data for the set of trucks in the training group are used for
developing and training the classification algorithms (presented in the next section). The testing
data are used for quantifying the accuracy of the models.

Table 4 Training and testing data

Trailer Type Training | Testing Total
Intermodal container 691 298 990
Refrigerated container 81 31 112
Dry van 854 369 1,225
Refrigerated dry van 493 203 698
Other (Platform, auto
transp(()rt, tank, dump, etc.) 218 28 319

Total Samples 2,337 999 3,336

SVM Method
To be able to categorize trucks into distinct groups, pertinent features that help distinguish trucks
in each group are needed. After experimenting with different combination of variables, the six
variables listed in Table 5 are found to be effective for the purpose of this study and are used as
input features.

Table 5 Features extracted for each truck

Feature Abbreviation
Trailer length TrL

Trailer height TrH

Trailer surface interquartile range | TrIQR

Top density TD

Bottom density BD

Overhang OH

These variables show enough variation across the two types of the truck trailers as shown
in plots in Figure 8(b). In the sample data, refrigerated containers have similar surface smoothness
as dry vans. Therefore, their TrIQR or TrSSD would be similar to that of dry vans but their
overhang (OH) measure is not as can be observed in Figure 8(a).
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Figure 8 (a) Overhang by Interquartile Range (b) Trailer height by trailer length

Trailer Length (TrL) and Trailer Height (TrH)

To find the trailer dimensions, a rectangular box is drawn as shown in Figure 9. While not all
enclosed vans have a perfect rectangular side profile, this assumption is accurate enough for the
analyses conducted here. To find the needed dimensions, four sides of the rectangle (top, bottom,
front, and back) needs to be determined. Since all trailers analyzed here have a relatively straight
side profile, this is exploited to determine the four sides needed.

For example, to determine the x-coordinate for the frontend of the trailer, a rectangular
region (e.g., 2ft high and 6.5ft long) much smaller than the trailer is selected where the ends of this
region are safely away from the four boundaries of the trailer. As indicated earlier each grid cell
contains the average z-coordinate (depth) of all LIDAR points corresponding (i.e., projected) to
that cell. We then collapse the vertical dimension of this sample (2ft by 6.5ft) rectangle by taking
the average of all z-coordinates for all y-levels at a given x coordinate. This results in one-
dimensional vector (along x-axis) with z-coordinates as the variables. We then fit a simple linear
regression model of the form z = mx +b to this vector. We then use this model to predict z-
coordinate (depth) as function of x, where x is now extended further towards the tractor unit where
the frontend of the trailer is expected to be. By measuring the difference between predicted z
(depth) and actual z (depth) we can identify a sudden drop or change in the surface depth. The x-
coordinate where the first sudden drop occurs will be identified as the frontend of the trailer. This
technique is repeated to determine the backend, top, and bottom of the trailer as well by scanning
in the relevant direction. Once these four coordinates are found the trailer dimensions are
straightforward to compute.

Trailer Surface Standard Deviation (TrSSD) and Trailer Surface Interquartile Range (TrIQR)

The surface smoothness of intermodal containers is quite different from that of enclosed vans.
Typical intermodal containers are made of corrugated sheet metal. The VLP-16 LIDAR sensor is
accurate enough to detect the depth variation on the side surface of these containers. Therefore,
two variables (77SSD and TrIQR) are defined to capture that information. To do so, similar to the
analysis above, a rectangular region away from the estimated sides of the trailer is selected. A 2D-
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plane is fit to the depth data (z-coordinate) by using an ordinary linear regression model. This
plane in essence represents the average z-coordinates of the side surface of the trailer. The
deviations or residuals from this plane are then calculated. The two variables, 77SSD and TrIQOR,
are defined as the standard deviation and interquartile range of these residuals, respectively.

Top Density (TD) and Bottom Density (BD)

Dry vans and refrigerated dry vans look the same except the later has a refrigerator unit attached
to the dry van’s frontend. The refrigerator unit doesn’t cover the whole spaces on the frontend.
There is a gap between tractor chassis and underneath of the refrigerator unit, as seen in Figure 9.
Therefore, in the 2D profile of a refrigerated unit, there are more LIDAR points observed at the
top section protruding forward from the trailer. This information can be captured by defining two
regions (rectangles) at the frontend of the trailer. Since the x-coordinate of the frontend is
estimated, we can go a certain distance towards the tractor (about 2.5ft) from the trailer edge (see
the highlighted section in Figure 9) and calculate the density of points in a rectangle close to the
top of the trailer and another rectangle to the bottom of the trailer. The heights of the bottom and
top rectangles are taken as 2ft and 4ft respectively. We then simply count the number of grid cells
that are not empty and divide the count by the area of the rectangle to find the density of points.

Overhang
Another useful variable is the overhang distance or the distance from the trailer end to where the

rear tandem axle is. This distance is quite small for intermodal trailer containers whereas it is
typically larger for enclosed or dry vans. Rather than attempting to measure the overhang distance
from the 2D profiles, we use a 2ft high by 4ft long rectangle starting at the origin of the coordinate
system and measure the density of points within this rectangle. This turns out to be a good surrogate
variable to capture the variation in rear overhang among the trailers of different types.

Refrigerated Dry Van Top density
Trailer Top LifRE
é li t Backend Trailer Surface Frontend
g’ / Bottom

Ly

Overhang

sEhyesazaenIdeny

Clenghlsem)
Figure 9 Extracted features annotated on a 2D profile of a refrigerated dry van

Heuristics Method

After applying the SVM model, the unknown truck data are now labeled as either dry van or
intermodal container. In the second step, a heuristic is implemented to detect whether there is a
refrigerator on the trailer unit. This is accomplished by using the following two variables:

15



ransportation
H I{Iﬁ%ﬁaﬁgﬁ

e Top density (TD)
e Bottom density (BD)

The ratio of BD to TD is calculated. If this ratio is less than a threshold (here taken to be 0.7 per
performance on the training samples) then, this will indicate that there are many more LIDAR
points observed at the top region, and hence a refrigerator unit is assumed to be present on the

trailer.

Table 6 shows the results of the two-step approach explained above. The SVM model
correctly identifies the trailer types with 98%, 98%, and 93% accuracy for intermodal containers,
dry vans, and other trailers, respectively. In step 2, in order to separate refrigerated and non-
refrigerated trailers from the dry vans and intermodal trailers, the heuristic method explained above
is applied. This method also shows high accuracy ranging between 90% and 100%. Table 6 also
includes results from Hernandez et al. study [1] which proposes a classification method for truck
body configuration using weigh-in-motion and inductive loop signature data. For all cases, the
proposed method in this study gives more accurate results most likely due to the richer LIDAR
data and more pertinent information and features extracted from the raw data. It is interesting to
note that both methods have the best performance in the refrigerated intermodal category and
lowest in the refrigerated dry (or enclosed) vans.

Table 6 Results from the SVM and Heuristic

Hernandez et al
Proposed Method (2016) Study
CCR Number | Best CCR
Number of
. (Correct of test
Trailer Type test . .
samoles Classification | samples
P Rate)
Step 1 (Classification

Method): SVM
Dry van 572 98%
Intermodal 329 98%
container
Other 98 93%

Step 2 (Heuristic):

Dry van 369 94% 2,329 83.8%
Refrigerated dry | 3 90% 1,565 75.3%
van
Intermodal 298 94% 131 87.8%
container
Refrigerated
intermodal 31 100% 16 93.8%
container

Transfer Learni

ng Method

In the transfer learning method, a pre-trained model would be chosen as a feature descriptor or
extractor. Over the years, researchers developed various architectures of deep learning to solve
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challenging object recognition problems. Of these, VGGNet, AlexNet, and ResNet are well-known
and popular as each of these achieved high levels of accuracy in classifying objects in large image
databases. Therefore, in this study, to find out which pre-trained model would be more suitable for
transferring the learnings to the truck trailer classification, three deep CNN models, i.e., VGGNet,
AlexNet, and ResNet, have been investigated. Features extracted from these pre-trained models
become the selected features and can be used as input to any classification algorithm. In our
previous study [9], we demonstrated how the features from a pre-trained ResNet model could be
utilized for truck classification based on camera images. The features from ResNet are used as
input to a Multi-Layer Perceptron (MLP) neural network which is shown to outperform other
machine learning algorithms such as SVM or Kth Nearest Neighbors [9]. In this study, we extend
the transfer learning idea for solving the truck classification problem by considering additional
well-known deep NNs and applying them to a new type of dataset, i.e., LIDAR point cloud data
expressed as an image.

All three CNN models listed above are already trained on the ILSVRC dataset. Since the model
is pre-trained, extractions of the already learned features and using them directly will save a great
amount of computation time. However, features in a CNN grow in complexity as we step deeper
into the network. Therefore, a key task is determining the optimal point at which the pre-trained
model structure should be cut or stopped in order to get the right level of feature complexity for
our task. Four different positions for the feature extraction has been investigated on all three
models as shown in Figure 10 & Figure 12. The features extracted from these models are used as
the feature descriptors for the respective MLP classifier which has two fully connected layers.
Hyper parameter optimization of this classifier was done through a simple grid-search to find the
optimum number of hidden units in each fully connected layer. The implemented MLP classifier
has 128 hidden units for the first layer and 64 hidden units for the second one, the learning rate is
0.001, and 200 epochs of training was done. Some specific details of the three deep networks are
provided below.

In 2012, Krizhevsky et al. have developed AlexNet which outperformed all the models at the
ILSVRC 2012 competition. AlexNet is one of the most popular CNNs and usually would be
considered as a baseline model. It has five convolutional layers followed by three fully connected
layers. The size of the input image for this model is 227 X 227 X 3 and